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Language Modelling: Review

Language models aim to represent the history of observed text
(w1, . . . ,wt−1) succinctly in order to predict the next word (wt):

• With count based n-gram LMs we approximate the history with just
the previous n words.

• Neural n-gram LMs embed the same fixed n-gram history in a
continues space and thus capture correlations between histories.

• With Recurrent Neural Network LMs we drop the fixed n-gram
history and compress the entire history in a fixed length vector,
enabling long range correlations to be captured.
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Capturing Long Range Dependencies

If an RNN Language Model is to outperform an n-gram model it
must discover and represent long range dependencies:

p(sandcastle | Alice went to the beach. There she built a)

While a simple RNN LM can represent such dependencies in
theory, can it learn them?
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RNNs: Exploding and Vanishing Gradients

Consider the path of partial derivatives linking a change in cost4 to
changes in h1:

hn = g(V [xn; hn−1] + c)

p̂n = softmax(Whn + b) w4
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The core of the recurrent product is the repeated multiplication of
Vh. If the largest eigenvalue of Vh is:

• 1, then gradient will propagate,

• > 1, the product will grow exponentially (explode),

• < 1, the product shrinks exponentially (vanishes).



RNNs: Exploding and Vanishing Gradients

Most of the time the spectral radius of Vh is small. The result is that the
gradient vanishes and long range dependencies are not learnt.

Many non-linearities (g(·)) can also shrink
the gradient.

�0(x) ⇡ 1

�0(x) ⇡ 0

�0(x) ⇡ 0

Second order optimisers ((Quasi-)Newtonian Methods) can overcome
this, but they are difficult to scale. Careful initialisation of the recurrent
weights can help.1

Here we will consider the most popular solution, changing the network
architecture.

1Stephen Merity: Explaining and illustrating orthogonal initialization for recurrent
neural networks. smerity.com/articles/2016/orthogonal_init.html

smerity.com/articles/2016/orthogonal_init.html


Long Short Term Memory (LSTM)
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Long Short Term Memory (LSTM)

hn = tanh(V [wn−1; hn−1] + c)
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Long Short Term Memory (LSTM)

cn = cn−1 + tanh(V [wn−1; hn−1] + bc)
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Long Short Term Memory (LSTM)

cn = cn−1 + in ◦ tanh(V [wn−1; hn−1] + bc)
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Long Short Term Memory (LSTM)

cn = fn ◦ cn−1 + in ◦ tanh(V [wn−1; hn−1] + bc)
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Long Short Term Memory (LSTM)

cn = fn ◦ cn−1 + in ◦ tanh(V [wn−1; hn−1] + bc)

hn = on ◦ tanh (Whcn + bh) .
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Long Short Term Memory (LSTM)

Christopher Olah: Understanding LSTM Networks
colah.github.io/posts/2015-08-Understanding-LSTMs/

colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM LM

The LSTM cell,2

cn = fn ◦ cn−1 + in ◦ ĉn,

ĉn = tanh (Wc [wn−1; ht−1] + bc) ,

hn = on ◦ tanh (Whcn + bh) .

in = σ (Wi [wn−1; ht−1] + bi ) ,

fn = σ (Wf [wn−1; ht−1] + bf ) ,

on = σ (Wo [wn−1; ht−1] + bo) ,

where hn is the hidden state at time n, and i , f , o are the input,
forget, and output gates respectively.3

2
Long Short-Term Memory. Hochreiter and Schmidhuber, Neural Computation 1997.

3
Optimizing Performance of Recurrent Neural Networks on GPUs. Appleyard et al., arXiv 2016.



LSTM LM

The LSTM cell,2

cn = fn ◦ cn−1 + (1− fn) ◦ ĉn,

ĉn = tanh (Wc [wn−1; ht−1] + bc) ,

hn = on ◦ tanh (Whcn + bh) .

in= σ (Wi [wn−1; ht−1] + bi ),

fn = σ (Wf [wn−1; ht−1] + bf ) ,

on = σ (Wo [wn−1; ht−1] + bo) ,

where hn is the hidden state at time n, and i , f , o are the input,
forget, and output gates respectively.3

2
Long Short-Term Memory. Hochreiter and Schmidhuber, Neural Computation 1997.

3
Optimizing Performance of Recurrent Neural Networks on GPUs. Appleyard et al., arXiv 2016.



Gated Recurrent Unit (GRU)

Christopher Olah: Understanding LSTM Networks
colah.github.io/posts/2015-08-Understanding-LSTMs/

colah.github.io/posts/2015-08-Understanding-LSTMs/


Gated Recurrent Unit (GRU)

The GRU cell,4

hn = (1− zn) ◦ hn−1 + zn ◦ ĥn.

zn = σ (Wz [xn; ht−1] + bz) ,

rn = σ (Wr [xn; ht−1] + br ) ,

ĥn = tanh
(
Wĥ[xn; rn ◦ hn−1] + bĥ

)
.

4Learning Phrase Representations using RNN EncoderDecoder for
Statistical Machine Translation. Cho et al, EMNLP 2014.



LSTMs and GRUs

Good

• Careful initialisation and optimisation of vanilla RNNs can
enable them to learn long(ish) dependencies, but gated
additive cells, like the LSTM and GRU, often just work.

• The (re)introduction of LSTMs has been key to many recent
developments, e.g. Neural Machine Translation, Speech
Recognition, TTS, etc.

Bad

• LSTMs and GRUs have considerably more parameters and
computation per memory cell than a vanilla RNN, as such
they have less memory capacity per parameter.5

5Capcity and Trainability in Recurrent Neural Networks. Collins et al., arXiv
2016.



Deep RNN LMs

The memory capacity of an RNN can be increased by employing a
larger hidden layer hn, but a linear increase in hn results in a
quadratic increase in model size and computation.

A Deep RNN increases the memory and representational ability
with linear scaling.
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Deep RNN LMs
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Deep RNN LM

Alternatively we can increase depth in the time dimension. This
improves the representational ability, but not the memory capacity.
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Deep RNN LM

Alternatively we can increase depth in the time dimension. This
improves the representational ability, but not the memory capacity.
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The recently proposed Recurrent Highway Network6 employs a
deep-in-time GRU-like cell with untied weights, and reports strong
results on language modelling.

6Recurrent Highway Networks. Zilly et al., arXiv 2016.



Scaling: Large Vocabularies

Much of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating:

p̂n = softmax (Whn + b)



Scaling: Large Vocabularies

Much of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating:

p̂n = softmax (Whn + b)

Solutions
Short-lists: use the neural LM for the most frequent words, and a
traditional ngram LM for the rest. While easy to implement, this nullifies
the neural LM’s main advantage, i.e. generalisation to rare events.
Batch local short-lists: approximate the full partition function for data
instances from a segment of the data with a subset of the vocabulary
chosen for that segment.7

7On Using Very Large Target Vocabulary for Neural Machine Translation. Jean et
al., ACL 2015



Scaling: Large Vocabularies

Much of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating:

p̂n = softmax (Whn + b)

Solutions
Approximate the gradient/change the objective: if we did not have
to sum over the vocabulary to normalise during training it would be much
faster. It is tempting to consider maximising likelihood by making the log
partition function an independent parameter c , but this leads to an ill
defined objective.

p̂n ≡ exp (Whn + b)× exp(c)



Scaling: Large Vocabularies

Much of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating:

p̂n = softmax (Whn + b)

Solutions
Approximate the gradient/change the objective: Mnih and Teh use
Noise Contrastive Estimation (NCE). This amounts to learning a binary
classifier to distinguish data samples from (k) samples from a noise
distribution (a unigram is a good choice):

p(Data = 1|p̂n) =
p̂n

p̂n + kpnoise(wn)

Now parametrising the log partition function as c does not degenerate.
This is very effective for speeding up training, but has no impact on
testing time.7

7
In practice fixing c = 0 is effective. It is tempting to believe that this noise contrastive objective justifies

using unnormalised scores at test time. This is not the case and leads to high variance results.



Scaling: Large Vocabularies

Much of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating:

p̂n = softmax (Whn + b)

Solutions
Approximate the gradient/change the objective: NCE defines a
binary classification task between true or noise words with a logistic loss.
An alternative proposed by Jozefowicz et al.7, called Importance
Sampling (IS), defines a multiclass classification problem between the
true word and noise samples, with a Softmax and cross entropy loss.

7Exploring the Limits of Language Modeling. Jozefowicz et al., arXiv 2016.



Scaling: Large Vocabularies

Much of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating:

p̂n = softmax (Whn + b)

Solutions
Factorise the output vocabulary: One level factorisation works well
(Brown clustering is a good choice, frequency binning is not):

p(wn|p̂class
n , p̂word

n ) = p(class(wn)|p̂class
n )× p(wn|class(wn), p̂word

n ),

where the function class(·) maps each word to one class. Assuming
balanced classes, this gives a

√
V speedup.



Scaling: Large Vocabularies

Much of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating:

p̂n = softmax (Whn + b)

Solutions
Factorise the output vocabulary: By extending the factorisation to a
binary tree (or code) we can get a logV speedup,7 but choosing a tree is
hard (frequency based Huffman coding is a poor choice):

p(wn|hn) =
∏
i

p(di |ri , hn),

where di is i th digit in the code for word wn, and ri is the parameter
vector for the i th node in the path corresponding to that code.

Recently Grave et al. proposed optimising an n-ary factorisation tree for
both perplexity and GPU throughput.8

7A scalable hierarchical distributed language model. Mnih and Hinton, NIPS’09.
8Efficient softmax approximation for GPUs. Grave et al., arXiv 2016



Scaling: Large Vocabularies

Full Softmax
Training: Computation and memory O(V ),
Evaluation: Computation and memory O(V ),
Sampling: Computation and memory O(V ).

Balanced Class Factorisation
Training: Computation O(

√
V ) and memory O(V ),

Evaluation: Computation O(
√
V ) and memory O(V ),

Sampling: Computation and memory O(V ) (but average case
is better).

Balanced Tree Factorisation
Training: Computation O(logV ) and Memory O(V ),
Evaluation: Computation O(logV ) and Memory O(V ),
Sampling: Computation and Memory O(V ) (but average case
is better).

NCE / IS
Training: Computation O(k) and Memory O(V ),
Evaluation: Computation and Memory O(V ),
Sampling: Computation and Memory O(V ).



Sub-Word Level Language Modelling

An alternative to changing the softmax is to change the input
granularity and model text at the morpheme or character level.

This results in a much smaller softmax and no unknown words, but
the downsides are longer sequences and longer dependencies.

This also allows the model to capture subword structure and
morphology: disunited ↔ disinherited ↔ disinterested.

Charater LMs lag word based models in perplexity, but are clearly
the future of language modelling.
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Regularisation: Dropout

Large recurrent networks often overfit their training data by
memorising the sequences observed. Such models generalise poorly
to novel sequences.

A common approach in Deep Learning is to overparametrise a
model, such that it could easily memorise the training data, and
then heavily regularise it to facilitate generalisation.

The regularisation method of choice is often Dropout.9

9Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Srivastava et al. JMLR 2014.



Regularisation: Dropout

Dropout is ineffective when applied to recurrent connections, as
repeated random masks zero all hidden units in the limit. The
most common solution is to only apply dropout to non-recurrent
connections.10
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10Recurrent neural network regularization. Zaremba et al., arXiv 2014.



Regularisation: Bayesian Dropout (Gal)

Gal and Ghahramani11 advocate tying the recurrent dropout mask
and sampling at evaluation time:
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11A Theoretically Grounded Application of Dropout in Recurrent Neural
Networks. Gal and Ghahramani, NIPS 2016.



Summary

Long Range Dependencies

• The repeated multiplication of the recurrent weights V
lead to vanishing (or exploding) gradients,

• additive gated architectures, such as LSTMs, significantly
reduce this issue.

Deep RNNs

• Increasing the size of the recurrent layer increases
memory capacity with a quadratic slow down,

• deepening networks in both dimensions can improve their
representational efficiency and memory capacity with a
linear complexity cost.

Large Vocabularies

• Large vocabularies, V > 104, lead to slow softmax
calculations,

• reducing the number of vector matrix products evaluated,
by factorising the softmax or sampling, reduces the
training overhead significantly.

• Different optimisations have different training and
evaluation complexities which should be considered.
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The End

Next week we will cover representation learning for classification
and accelerating deep networks using GPUs.


